「BZOJ 3684」大朋友和多叉树

BZOJ 3684: 大朋友和多叉树

题意

求包含 $s$ 个叶子,非叶子节点的孩子数目在集合 $D$ 中的有根树数量。

孩子之间有顺序,保证 $1\notin D$。

模质数 $950009857=453\times 2^{21}+1$

$s,|D|\le 10^5$

做法

好像就是板题

令 $D(x)=\sum\limits_{i=2}^\infty [i\in D]x^i$

可以发现答案的生成函数 $f(x)=D(f(x))+x$,$f(x)$ 为 $x-D(x)$ 的复合逆

所求即为 $[x^s]f(x)$

根据拉格朗日反演公式

$$
[x^s]f(x)

\frac{1}{s} [x^{s-1}]\left(\frac{x-D(x)}{x}\right)^{-s}
$$

可以在 $\mathcal O(n\log n)$ 的复杂度内完成

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<string.h>
#include<cmath>
#include<vector>

using namespace std;
#define ull unsigned long long

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
return (s==t?t=(s=buf)+fread(buf,1,IN_LEN,stdin),(s==t?-1:*s++):*s++);
}
template<class T>
inline void read(T &x) {
static bool iosig;
static char c;
for (iosig=false, c=read(); !isdigit(c); c=read()) {
if (c == '-') iosig=true;
if (c == -1) return;
}
for (x=0; isdigit(c); c=read()) x=((x+(x<<2))<<1)+(c^'0');
if (iosig) x=-x;
}

const unsigned N = 1<<18, P = 950009857;
struct Z{
unsigned x;
Z(const unsigned _x=0):x(_x){}
inline Z operator +(const Z &rhs)const{ return x+rhs.x<P?x+rhs.x:x+rhs.x-P;}
inline Z operator -(const Z &rhs)const{ return x<rhs.x?x-rhs.x+P:x-rhs.x;}
inline Z operator -()const{ return x?P-x:0;}
inline Z operator *(const Z &rhs)const{ return static_cast<ull>(x)*rhs.x%P;}
inline Z operator +=(const Z &rhs){ return x=x+rhs.x<P?x+rhs.x:x+rhs.x-P, *this;}
inline Z operator -=(const Z &rhs){ return x=x<rhs.x?x-rhs.x+P:x-rhs.x, *this;}
inline Z operator *=(const Z &rhs){ return x=static_cast<ull>(x)*rhs.x%P, *this;}
};
int s, m;
vector<Z> d;

namespace Poly{
Z w[N];// for DFT
Z Inv[N];// for Integral

inline Z Pow(Z x, int y=P-2){
Z ans=1;
for(; y; y>>=1, x=x*x) if(y&1) ans=ans*x;
return ans;
}
inline void Init(){
for(unsigned i=1; i<N; i<<=1){
w[i]=1;
Z t=Pow(7, (P-1)/i/2);
for(unsigned j=1; j<i; ++j) w[i+j]=w[i+j-1]*t;
}
Inv[1]=1;
for(unsigned i=2; i<N; ++i) Inv[i]=Inv[P%i]*(P-P/i);
}
inline int Get(int x){ int n=1; while(n<=x) n<<=1; return n;}
inline void DFT(vector<Z> &f, int n){
static ull F[N];
if((int)f.size()!=n) f.resize(n);
for(int i=0, j=0; i<n; ++i){
F[i]=f[j].x;
for(int k=n>>1; (j^=k)<k; k>>=1);
}
for(int i=1; i<n; i<<=1) for(int j=0; j<n; j+=i<<1){
Z *W=w+i;
ull *F0=F+j, *F1=F+j+i;
for(int k=j; k<j+i; ++k, ++W, ++F0, ++F1){
ull t=(*F1)*(W->x)%P;
(*F1)=*F0+P-t, (*F0)+=t;
}
}
for(int i=0; i<n; ++i) f[i]=F[i]%P;
}
inline void IDFT(vector<Z> &f, int n){
f.resize(n), reverse(f.begin()+1, f.end());
DFT(f, n);
Z I=Pow(n);
for(int i=0; i<n; ++i) f[i]=f[i]*I;
}
inline vector<Z> operator +(const vector<Z> &f, const vector<Z> &g){
vector<Z> ans=f;
for(unsigned i=0; i<f.size(); ++i) ans[i]+=g[i];
return ans;
}
inline vector<Z> operator *(const vector<Z> &f, const vector<Z> &g){
if((ull)f.size()*g.size()<=1000){
vector<Z> ans;
ans.resize(f.size()+g.size()-1);
for(unsigned i=0; i<f.size(); ++i) for(unsigned j=0; j<g.size(); ++j)
ans[i+j]+=f[i]*g[j];
return ans;
}
static vector<Z> F, G;
F=f, G=g;
int p=Get(f.size()+g.size()-2);
DFT(F, p), DFT(G, p);
for(int i=0; i<p; ++i) F[i]*=G[i];
IDFT(F, p);
return F.resize(f.size()+g.size()-1), F;
}
vector<Z> &PolyInv(const vector<Z> &f, int n=-1){
if(n==-1) n=f.size();
if(n==1){
static vector<Z> ans;
return ans.clear(), ans.push_back(Pow(f[0])), ans;
}
vector<Z> &ans=PolyInv(f, (n+1)/2);
vector<Z> tmp(&f[0], &f[0]+n);
int p=Get(n*2-2);
DFT(tmp, p), DFT(ans, p);
for(int i=0; i<p; ++i) ans[i]=((Z)2-ans[i]*tmp[i])*ans[i];
IDFT(ans, p);
return ans.resize(n), ans;
}
// a=d*b+r
inline void PolyDiv(const vector<Z> &a, const vector<Z> &b, vector<Z> &d, vector<Z> &r){
if(b.size()>a.size()) return d.clear(), (void)(r=a);

vector<Z> A=a, B=b, iB;
int n=a.size(), m=b.size();
reverse(A.begin(), A.end()), reverse(B.begin(), B.end());
B.resize(n-m+1), iB=PolyInv(B, n-m+1);
d=A*iB;
d.resize(n-m+1), reverse(d.begin(), d.end());

r=b*d, r.resize(m-1);
for(int i=0; i<m-1; ++i) r[i]=a[i]-r[i];
}
inline vector<Z> Derivative(const vector<Z> &a){
vector<Z> ans(a.size()-1);
for(unsigned i=1; i<a.size(); ++i) ans[i-1]=a[i]*i;
return ans;
}
inline vector<Z> Integral(const vector<Z> &a){
vector<Z> ans(a.size()+1);
for(unsigned i=0; i<a.size(); ++i) ans[i+1]=a[i]*Inv[i+1];
return ans;
}
inline vector<Z> PolyLn(const vector<Z> &f){
vector<Z> ans=Derivative(f)*PolyInv(f);
ans.resize(f.size()-1);
return Integral(ans);
}
vector<Z> PolyExp(const vector<Z> &f, int n=-1){
if(n==-1) n=f.size();
if(n==1) return {1};
vector<Z> ans=PolyExp(f, (n+1)/2), tmp;
ans.resize(n), tmp=PolyLn(ans);
for(Z &i:tmp) i=-i;
++tmp[0].x;
ans=ans*(tmp+f);
return ans.resize(n), ans;
}
inline vector<Z> PolyPower(const vector<Z> &f, int k){
vector<Z> ans=PolyLn(f);
for(Z &i:ans) i=i*k;
return PolyExp(ans);
}
}
int main() {
Poly::Init();
read(s), read(m), d.resize(s);
d[0]=1;
for(int i=1, x; i<=m; ++i) read(x), d[x-1]+=P-1;
d=Poly::PolyPower(d, P-s);
return printf("%d", (d[s-1]*Poly::Pow(s)).x), 0;
}

「BZOJ 3684」大朋友和多叉树

https://cekavis.site/bzoj-3684/

Author

Cekavis

Posted on

2019-02-11

Updated on

2022-06-16

Licensed under

Comments