1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
| #include<cstdio> #include<algorithm> #include<cctype> #include<string.h> #include<cmath> #include<vector>
using namespace std; #define ull unsigned long long
inline char read() { static const int IN_LEN = 1000000; static char buf[IN_LEN], *s, *t; return (s==t?t=(s=buf)+fread(buf,1,IN_LEN,stdin),(s==t?-1:*s++):*s++); } template<class T> inline void read(T &x) { static bool iosig; static char c; for (iosig=false, c=read(); !isdigit(c); c=read()) { if (c == '-') iosig=true; if (c == -1) return; } for (x=0; isdigit(c); c=read()) x=((x+(x<<2))<<1)+(c^'0'); if (iosig) x=-x; } const int OUT_LEN = 10000000; char obuf[OUT_LEN], *ooh=obuf; inline void print(char c) { if (ooh==obuf+OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), ooh=obuf; *ooh++=c; } template<class T> inline void print(T x) { static int buf[30], cnt; if (x==0) print('0'); else { if (x<0) print('-'), x=-x; for (cnt=0; x; x/=10) buf[++cnt]=x%10+48; while(cnt) print((char)buf[cnt--]); } } inline void flush() { fwrite(obuf, 1, ooh - obuf, stdout); }
const unsigned P = 998244353; struct Z{ unsigned x; Z(const unsigned _x=0):x(_x){} inline Z operator +(const Z &rhs)const{ return x+rhs.x<P?x+rhs.x:x+rhs.x-P;} inline Z operator -(const Z &rhs)const{ return x<rhs.x?x-rhs.x+P:x-rhs.x;} inline Z operator -()const{ return x?P-x:0;} inline Z operator *(const Z &rhs)const{ return static_cast<ull>(x)*rhs.x%P;} inline Z operator +=(const Z &rhs){ return x=x+rhs.x<P?x+rhs.x:x+rhs.x-P, *this;} inline Z operator -=(const Z &rhs){ return x=x<rhs.x?x-rhs.x+P:x-rhs.x, *this;} inline Z operator *=(const Z &rhs){ return x=static_cast<ull>(x)*rhs.x%P, *this;} }; int n, m, t; vector<Z> a, b;
namespace Poly{ const int MAX_LEN = 1<<18;
Z w[MAX_LEN], Inv[MAX_LEN];
inline Z Pow(Z x, int y=P-2){ Z ans=1; for(; y; y>>=1, x=x*x) if(y&1) ans=ans*x; return ans; } inline void Init(){ for(int i=1; i<MAX_LEN; i<<=1){ w[i]=1; Z t=Pow(3, (P-1)/i/2); for(int j=1; j<i; ++j) w[i+j]=w[i+j-1]*t; } Inv[1]=1; for(int i=2; i<MAX_LEN; ++i) Inv[i]=Inv[P%i]*(P-P/i); } inline int Get(int x){ int n=1; while(n<=x) n<<=1; return n;} inline void DFT(vector<Z> &f, int n){ static ull F[MAX_LEN]; if((int)f.size()!=n) f.resize(n); for(int i=0, j=0; i<n; ++i){ F[i]=f[j].x; for(int k=n>>1; (j^=k)<k; k>>=1); } for(int i=1; i<n; i<<=1) for(int j=0; j<n; j+=i<<1){ Z *W=w+i; ull *F0=F+j, *F1=F+j+i; for(int k=j; k<j+i; ++k, ++W, ++F0, ++F1){ ull t=(*F1)*(W->x)%P; (*F1)=*F0+P-t, (*F0)+=t; } } for(int i=0; i<n; ++i) f[i]=F[i]%P; } inline void IDFT(vector<Z> &f, int n){ f.resize(n), reverse(f.begin()+1, f.end()); DFT(f, n); Z I=Pow(n); for(int i=0; i<n; ++i) f[i]=f[i]*I; } inline vector<Z> Add(const vector<Z> &f, const vector<Z> &g){ vector<Z> ans=f; for(unsigned i=0; i<f.size(); ++i) ans[i]+=g[i]; return ans; } inline vector<Z> Mul(const vector<Z> &f, const vector<Z> &g){ if(f.size()*g.size()<=1000){ vector<Z> ans; ans.resize(f.size()+g.size()-1); for(unsigned i=0; i<f.size(); ++i) for(unsigned j=0; j<g.size(); ++j) ans[i+j]+=f[i]*g[j]; return ans; } static vector<Z> F, G; F=f, G=g; int p=Get(f.size()+g.size()-2); DFT(F, p), DFT(G, p); for(int i=0; i<p; ++i) F[i]*=G[i]; IDFT(F, p); return F.resize(f.size()+g.size()-1), F; } vector<Z> &PolyInv(const vector<Z> &f, int n=-1){ if(n==-1) n=f.size(); if(n==1){ static vector<Z> ans; return ans.clear(), ans.push_back(Pow(f[0])), ans; } vector<Z> &ans=PolyInv(f, (n+1)/2); vector<Z> tmp(&f[0], &f[0]+n); int p=Get(n*2-2); DFT(tmp, p), DFT(ans, p); for(int i=0; i<p; ++i) ans[i]=((Z)2-ans[i]*tmp[i])*ans[i]; IDFT(ans, p); return ans.resize(n), ans; } inline vector<Z> Derivative(const vector<Z> &a){ vector<Z> ans(a.size()-1); for(unsigned i=1; i<a.size(); ++i) ans[i-1]=a[i]*i; return ans; } inline vector<Z> Integral(const vector<Z> &a){ vector<Z> ans(a.size()+1); for(unsigned i=0; i<a.size(); ++i) ans[i+1]=a[i]*Inv[i+1]; return ans; } inline vector<Z> PolyLn(const vector<Z> &f){ vector<Z> ans=Mul(Derivative(f), PolyInv(f)); ans.resize(f.size()-1); return Integral(ans); } vector<Z> divide(int l, int r, const vector<Z> &f){ if(l==r) return vector<Z>{1, f[l]}; int mid=(l+r)>>1; return Mul(divide(l, mid, f), divide(mid+1, r, f)); } inline vector<Z> solve(const vector<Z> &f, int t){ vector<Z> ans=divide(0, f.size()-1, f); ans.resize(t+1), ans=PolyLn(ans); for(int i=1; i<=t; ++i) ans[i]*=(i&1?i:P-i); return ans[0]=f.size(), ans; } } int main() { Poly::Init(); read(n), read(m), a.resize(n), b.resize(m); for(int i=0; i<n; ++i) read(a[i].x); for(int i=0; i<m; ++i) read(b[i].x); read(t); a=Poly::solve(a, t); b=Poly::solve(b, t); for(int i=1, k=1; i<=t; k=(ull)k*Poly::Inv[++i].x%P) a[i]=a[i]*k; for(int i=1, k=1; i<=t; k=(ull)k*Poly::Inv[++i].x%P) b[i]=b[i]*k; a=Poly::Mul(a, b), a.resize(t+1); for(int i=1, k=Poly::Pow((ull)n*m%P).x; i<=t; k=(ull)k*++i%P) print((a[i]*k).x), print('\n'); return flush(), 0; }
|